Empower - The Campaign for Northeastern University


MIE, CHEM, & Physics Departments present: Advances in Modeling and Simulation of Microstructure, with an Emphasis on 3D Aspects by Professor A.D. (Tony) Rollett

~~ Distinguished Lecture in Nanotechnologies through Materials Innovation Co-hosted by Mechanical and Industrial Engineering, Chemical Engineering, and Physics Departments Presents

Professor A.D. (Tony) Rollett

Department of Materials Science & Engineering Carnegie Mellon University

Topic: Advances in Modeling and Simulation of Microstructure, with an Emphasis on 3D Aspects

Date: Thursday, April 17, 2014

Time: 10:30am to 12:00pm (Refreshments from 10:00am to 10:30am)

Location: 346 Curry Student Center


Abstract: There have been substantial advances in modeling and simulation of microstructure in 3D. These have been accompanied by equally significant advances in characterization techniques, with serial sectioning, synthetic microstructure generation and synchrotron radiation all contributing strongly. Image-based methods for solving elastic, viscoplastic and elasto-viscoplastic problems are now available to complement finite element methods. The image-based methods sidestep the difficulty of generating meshes that conform to 3D microstructures while preserving mesh quality. The FFT-based simulations originated by Pierre Suquet and Ricardo Lebensohn provide an example. The resolution available permits many aspects of heterogeneity in deformation to be investigated. Materials can also be orientation mapped non-destructively in 3D thanks to penetrating radiation at synchrotrons, which permits microstructural evolution to be characterized. High Energy X-ray Diffraction Microscopy (HEDM) is a prime example of this approach. Synthetic microstructure generation with tools such as Dream.3D now includes distributions of orientation, grain boundary character and grain morphology, even fitting the tails of distributions. Examples are given of experiment-simulation comparisons of mechanical twinning in Zr, orientation change and gradients in copper, fatigue crack initiation in superalloys, spatially varying strain and orientation gradients in steel, and tin whisker formation.


Bio-Sketch: Professor A.D. (Tony) Rollett is a Professor in the Department of Materials Science & Engineering at Carnegie Mellon University. He has a M.A. in Metallurgy & Materials Science from Cambridge University, UK, in 1976 and a Ph.D. in Materials Engineering, from Drexel University, 1987. Professor Rollett’s research program emphasizes quantification of microstructure, especially in three dimensions, and its impact on properties and processing using both computational and experimental techniques. Important recent results include the effect of second phase particles on grain size stabilization in superalloys; investigation of orientation gradients development in metals; development of constitutive relations for sheet metal formability; measurement of anisotropic grain boundary energies and mobilities; development of methods for synthesizing statistically representative three dimensional microstructures; measurement and modeling of texture development during processing (recrystallization) in aluminum alloys; effect of solute on boundaries and triple junctions. The ultimate aim is to put microstructure-properties relationships on a quantitative basis for the prediction and optimization of materials processing and application.

Thursday, April 17, 2014 at 10:30am to 12:00pm

Curry Student Center, 346
346 Huntington Avenue, Boston, MA, Boston

Event Type



COE, Mechanical and Industrial Engineering

Google Calendar iCal Outlook

Recent Activity